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Abstract 
 

Analytical models are presented in this study for the analysis of RC joints strengthened with 
composite materials.  The models provide equations for stresses and strains at various stages of the 
response (before or after yielding of the beam or column reinforcement) until the ultimate capacity 
is reached, defined by concrete crushing or FRP failure due to fracture or debonding.  Solutions to 
these equations are obtained numerically.  The analytical formulation provides useful information 
on the shear capacity of FRP-strengthened joints in terms of the quantity and configuration of the 
externally bonded reinforcement and may be used to design FRP jackets for poorly detailed beam-
column joints; an illustration is provided through a case study.  Finally, the analytical model is 
compared with a series of test results and the agreement between theory and experiments is found 
satisfactory. 
 

Introduction 
 

To overcome the difficulties and some problems associated with traditional techniques for 
strengthening shear-critical RC joints, namely intensive labor, artful detailing, increased 
dimensions, corrosion protection and special attachments, recent research efforts have focused on 
the use of fiber reinforced polymers (FRP), that may be epoxy-bonded in the form of flexible sheets 
or strips, with fibers oriented properly so as to carry tension forces due to shear (see Figure 1a as a 
typical example). 
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Figure 1. (a) Schematic illustration of RC joint strengthened with FRP (lines indicate direction of 

fibers). (b) Moment and shear acting at joint and definition of coordinate system. 
 

Until now, FRP-strengthened joints have been studied mainly experimentally.  Analytical 
modeling has been extremely limited and has led to oversimplified design approaches, failing to 
capture the real state of stress (and strain) in the joint. 
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On the other hand, analytical modeling of RC joints (without FRP) has been extensive.  One 
of the most powerful models is that of Pantazopoulou and Bonacci (1992), which uses stress 
equilibrium and strain compatibility to yield the shear strength of a joint with known geometry and 
reinforcement quantities.  In this study the authors have extended the aforementioned model to 
account for the effect of externally bonded FRP.  They have also developed computer programs that 
may be used to trace the state of stress and strain in RC joints strengthened with either 
unidirectional strips or flexible sheets (the latter may be combined to form laminates).  Following 
the analytical and numerical formulations one case study is analyzed and a comparison of the 
analytical model with existing test results is made. 
 

Joints Strengthened with Sheets 
 

Basic Assumptions 
A typical beam-column joint is illustrated in Figure 1b.  The joint is idealized as a three-

dimensional element, with dimensions d (width of column), b (width of beam) and h (height of 
beam).  Average stresses in the joint are shown in Figure 2a,b.  Shear stresses are introduced by 
direct member action and by bond that develops between the main reinforcement and the joint core 
concrete.  For simplicity, it is assumed that the shear stress, v, is uniformly distributed over the 
boundaries of the joint.  Furthermore, it is assumed that at the moment of strengthening the joint is 
already loaded, so that a set of initial normal strains, εοt and εοl in the transverse (beam) and 
longitudinal (column) direction, respectively, and an initial shear strain, γο, have developed. 
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Figure 2.  Stress equilibrium. (a) Horizontal forces; (b) vertical forces. 
 

The principal strains, ε1 and ε2, are related to those in the longitudinal and transverse 
directions, εl, and εt, through the following expression: 
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where θ = inclination (from the t axis) of the maximum principal strain ε1.  Moreover, assuming 
that: (a) the maximum principal stress in the concrete, σ1, cannot exceed the tensile capacity, which 
is taken zero; and (b) the directions of principal strains and stresses coincide (this is nearly correct if 
the reinforcement has not yielded), one may show that: 
 

θσ tanvt −=                  (2) 
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where σt and σl is the average compressive stress in the concrete in the transverse (t) and 
longitudinal (l) direction, respectively.  Furthermore, with σ1 = 0, the “stress invariant” condition 
gives the minimum principal stress in the concrete: 
 

lt σσσ +=2                  (4) 
 
Finally, the shear strain γ in the joint equals: 
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Equilibrium Considerations 
A key assumption in this section is that the FRP material consists of sheets or fabrics (with 

fibers in directions that do not coincide necessarily with the vertical and/or horizontal) that are 
stacked to form a laminate of thickness tf.  In this case the reinforcement ratio in each direction is ρft 
= ρfl = ρf = ntf/b, where n is the number of laminates (n = 2 for two-sided jackets, when both sides of 
the joint are accessible; n = 1 for one-sided jacket, when a transverse beam exists so that application 
of the jacket on both sides is not possible). 

Stresses and strains in the composite material are coupled according to the following 
constitutive law: 
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where fft = average normal stress in the FRP in the transverse direction (at mid-width of the joint); ffl 
= average normal stress in the FRP in the longitudinal direction (at mid-height of the joint); fftl = 
shear stress in the composite material; and Qij (i, j = 1, 2, 3) are elements of the composite material 
stiffness matrix that depend on the properties (four elastic constants and thickness) of the various 
laminae (layers) that have been stacked to form the joint’s external reinforcement. 

Horizontal force equilibrium requires that σt satisfy the following: 
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where ft = average stress in the horizontal stirrups (at mid-width of the joint); ρs = stirrup 
reinforcement ratio; ρb = total main beam reinforcement ratio; βt = factor with values between 0-1, 
relating the magnitude of stresses (or strains) in the main beam reinforcement to the average stirrup 
stresses (or strains) at the column centerline; and Nh = compressive axial force of the beam (if any). 
The factor βt accounts for the bond conditions along the main beam reinforcement: for perfect bond, 
βt = 0, for negligible bond βt = 1 (Pantazopoulou and Bonacci 1992). 

Similarly, vertical force equilibrium gives the average longitudinal compressive stress in the 
concrete, σl, as follows: 
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where fl = average stress of longitudinal reinforcement of the column inside the joint core at the 
mid-height of the joint; ρc,in = column reinforcement ratio inside the joint core; ρc = total main 
column reinforcement ratio (at the boundaries of the joint core); βl = factor that relates the 
magnitude of stresses (or strains) in the main column reinforcement to the average stresses (or 
strains) of the reinforcement inside the core at the beam centerline; and Nv = compressive axial 
force of the column. As above, the factor βl accounts for the bond conditions along the main column 
reinforcement (at the boundaries of the core). 

To limit the number of variables in the problem, we make the following simplifications: ρt = 
ρs+βtρb = effective horizontal reinforcement ratio, ρl = ρc,in+βlρc = effective vertical reinforcement 
ratio.  Moreover, we assume that the effective yield stress of the horizontal reinforcement, fyt, is 
given as fyt = (ρsfsy+βtρbfby)/ρt, where fsy = yield stress of stirrups and fby = yield stress of beam 
reinforcement.  The yield stress of the column reinforcement is denoted as fyl.  Next we analyze all 
the possible states of joint behavior. 
 
Analysis before yielding of steel 

We start with Equation 1 and the material constitutive laws: 
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where Ec = is the secant elastic modulus of concrete in the strain under consideration.  The stress σ2 
is written in terms of v and tanθ using Equations 2-4.  The resulting expression is: 
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where nsc = Es/Ec.  Next we write Equation 7 with σt replaced by –vtanθ, γ replaced by the right term 
in Equation 5 and ft = Esεt.  The result is obtained in terms of v as follows: 
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where 
 

ογεε 1312111 QQQK olot ++=               (12) 
 

Finally, we write Equation 6 with σl replaced by –v/tanθ, γ replaced by the right term in 
Equation 5, fl = Esεl and v as given in Equation 9.  The result in terms of εl is as follows: 
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where 
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Analysis after yielding of effective horizontal reinforcement and before yielding of effective vertical 
reinforcement 

Τhe analysis is carried out as in 2.2.1 above with ft = fyt.  Hence v is given by Equation 11 
with the product Esεt replaced by fyt and the expression for εl becomes: 
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Analysis after yielding of both horizontal and vertical reinforcement 

The analysis is carried out as in 2.2.1 above with ft = fyt and fl = fyl. Hence v is given by 
Equation 11 with the product Esεt replaced by fyt and the expression for εl becomes: 
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Analysis after yielding of effective vertical reinforcement and before yielding of effective horizontal 
reinforcement 

Here too, the analysis is carried out as in 2.2.1 above with fl = fyl.  The shear stress v is given 
by Equation 11 and εl is: 
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Compressive crushing of concrete 

During any of the preceding states the concrete may crush; this will define failure of the 
joint. Crushing will occur when the principal compressive stress, σ2, reaches the strength of 
concrete, fc

max. The stress-strain relationship assumed here along the principal compressive direction 
is that described in Pantazopoulou and Bonacci (1992): 
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fc and εο (= -0.002) are the compressive strength and failure strain of concrete in uniaxial 
compression (they both carry negative signs) and ρsv is the volume ratio of stirrups. 
 
Failure of the FRP 

The FRP will fail by tensile fracture when the tensile stress (fft or ffl) reaches the tensile 
strength, ffu.  Debonding is treated here according to the fracture mechanics-based model of 
Holzenkämpfer (1994), as modified by Neubauer and Rostásy (1997).  This model gives the 
maximum tensile stress in an FRP sheet of thickness tf when debonding occurs, ff,deb, in terms of the 
FRP elastic modulus parallel to the loading direction, Ef, the mean tensile strength of concrete, fctm, 
and the bond length, ℓb. 
 
Solution procedure 

The analytical formulation given above was implemented in a computer program that was 
specifically developed for the analysis of RC joints strengthened with FRP sheets.  The user inputs 
a series of material and geometric characteristics and the program traces the state of stress and strain 
in the joint until failure. Input to the program consists of: (i) the geometric variables ρs, ρb, ρc,in, ρc, 
ρf ; (ii) the bond condition variables βt and βl; (iii) the material properties fc, fctm, εο for concrete and 
Es, fyl, fys, fyb for steel; (iv) the geometric and elastic constants of the various laminae forming the 
FRP laminate (the program calculates automatically the elements Qij of the FRP stiffness matrix) 
and the failure criterion for fracture of the laminate; (v) the normalized axial forces Nv/bd and 
Nh/bh; and (vi) the initial strain εot in the joint (at the moment of strengthening).  Note that for the 
most common case of laminates with fibers in the two orthogonal directions (l and t), in (iv) above 
it is sufficient to define the ultimate FRP stress, ffu,t in the direction t and ffu,l in the direction l.  
Upper limits to the FRP stress are also introduced to account for debonding; these values are 
estimated as described in 2.2.6 using the approach described in the previous section with Ef taken 
equal to Q11 or Q22, for the limiting values of fft or ffl, respectively. 

As a first step, the program calculates the initial strain εol required to satisfy equilibrium of 
the joint (without the FRP). Next, the strain εt is incremented and through an iteration scheme 
Equations 10, 11 and 13 are solved for tanθ, v and εl. The value of εl is always obtained by solving 
the equation corresponding to the state that is active in each step. At the end of each step the 
program checks for FRP debonding or concrete crushing, which define the shear capacity vmax (at 
least equal to that of the joint as if no FRP had been applied, vo,max). 

In principle, Ec is to be obtained through a secant modulus iteration scheme at each step. 
However, extensive analyses performed by the authors on FRP-strengthened joints as well as by 
Pantazopoulou and Bonacci (1992) on RC joints without FRP led to the conclusion that quite 
similar results can be obtained without iteration by choosing Ec to be the secant modulus at peak 
stress; this value may be assumed equal to 2fc/εο, that is Ec = 1000fc. 
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Numerical Study 
 

In the preceding sections algebraic expressions were derived for stresses and strains in RC 
joints strengthened with FRP materials at various states of the steel reinforcement (elastic, post-
yield).  In this section the equations for joint shear strength are applied to a generic joint 
strengthened with flexible sheets applied in several layers (laminae).  The joint is assumed 
reinforced with a lot more reinforcement in the column than in the beam (ρl = 0.015, ρt = 0.006).  
Each FRP layer (lamina) consists of unidirectional carbon fibers in an epoxy matrix and has the 
following elastic constants: elastic modulus parallel to the fibers EII = 180 GPa, elastic modulus 
perpendicular to the fibers E⊥ = 10 GPa, shear modulus GII,⊥ = 5 GPa and Poisson’s ratio νII,⊥ = 
0.25. For the concrete we assume fc = 25 MPa and fctm = 1.97 MPa.  For the yield strength of the 
steel reinforcement we take fyl = 400 MPa and fyt = 310 MPa.  Finally Nh = 0 and εot = 0.0002. 
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Figure 3. Shear strength of FRP-strengthened joint in terms of ρf for various fiber distributions. t-

yield = yielding of beam reinforcement, l-yield = yielding of column reinforcement, t-
debond. = debonding of beam reinforcement. 

 

If FRP debonding is not a concern, absolute dimensions of the joint need not be specified, as 
they serve only to normalize steel/FRP quantities and axial loads. But if debonding dominates, we 
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need to know tf, that is bρf/n, and the FRP bond length in each direction.  Hence, for each ρf we need 
to know the number of joint sides covered by the FRP (n = 1 or 2) and the width of the beam, b. In 
this case study b = 250 mm and n = 2.  The bond lengths along the t and l directions are taken as l bt 
= 250 mm and l bl = 500 mm. 

Next we define as Vl and Vt the volume fraction (within the laminate) of layers placed in the 
column and beam direction, respectively (Vl + Vt = 1).  The following four configurations of the 
carbon sheets are assumed: (a) all layers with the fibers in the direction of the beam, Vl/Vt = 0/1; (b) 
the number of layers with fibers in the beam direction is the same as that in the column direction, 
Vl/Vt = 0.5/0.5; (c) the layers with fibers in the beam direction are two times more than those with 
fibers in the column direction, Vl/Vt = 0.33/0.67; and (d) all layers with the fibers in the direction of 
the column, Vl/Vt = 1/0.  From the initial strain εot before strengthening of the joints the other two 
elements of the initial strain matrix are calculated as follows: εol = -6.97x10-5 and γo = 1.95x10-4. 

Application of the procedure described above gives the shear strength of the joint in terms of 
the amount of FRP as shown in Figures 3a, b for Nv/bd = 2.5 MPa.  Figure 3a applies if debonding 
is not of concern and Figure 3b applies with debonding taken into account.  Each figure gives also 
the state of reinforcement at failure (steel may have yielded and the FRP may debond or fracture, at 
a hypothetical strain taken here equal to 0.01). 

The general conclusion is that if debonding is not an issue, the effectiveness (increase in 
shear capacity, v) of FRP is quite substantial and, for a given ρf, it improves as more fibers are 
placed horizontally.  This result is not surprising, as for this particular case study the joint steel 
reinforcement is much higher in the vertical direction than in the horizontal.  If debonding is 
accounted for, the effectiveness of the FRP is relatively limited. Finally, FRP fracture is possible at 
low ρf only, and occurs in the horizontal (beam) direction. 
 

Experimental verification 
 

Experimental data on FRP-strengthened beam-column joints have been relatively limited.  
In order to validate the analytical model presented above and to obtain a more thorough 
understanding of the effect of various parameters on the behavior of RC joints, the authors 
conducted a comprehensive program that involved simulated seismic testing of approximately 2/3-
scale T-joint models.  The joints were poorly detailed (with no stirrups in the joint core) and the 
strengthening system was designed such that failure would occur due to shear.  Earthquake loads 
were simulated by applying an alternating force (in a quasistatic cyclic pattern) to the end of the 
beam through an idealized pin and the axial force in the column was kept constant (Figure 4). 

The displacement-controlled loading sequence for each specimen consisted of three cycles at 
a series of progressively increasing (by 5 mm) displacement amplitudes in each direction (push and 
pull), until a displacement of 45 mm was reached.  Details about these tests may be found in the 
recent article of Antonopoulos and Triantafillou (2002).  From the load versus displacement curves 
(see Figure 5 for some typical ones) it was possible to record the peak force, corresponding to joint 
failure, and based on that to calculate: (a) the tensile force Tb in the main beam reinforcement 
(calculated from cross section analysis); and (b) the shear force Vc at the column face.  The quantity 
(Tb – Vc)/bd gives the experimentally obtained value for the shear strength of the joint, vmax, which 
may be compared with the prediction of the analytical model. 

Another set of similar - in principle - test results available in the literature is that of Gergely 
et al. (2000), who tested (differently detailed, compared to the above specimens) T-joints 
strengthened with CFRP and calculated the shear stress based on the experimentally measured load 
applied at failure of the joints. 
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Figure 4.  Schematic view of test setup and geometry of specimens. 

 
Table 1.  Design parameters of joints tested. 

 
Specimen 

 
 

fc 
 

(MPa) 

Nv 
bd 

(MPa) 

(L/θ) 4 

 
 

tf
 

 
(mm) 

ρf 
 

(x10-3) 

EII 
 

(GPa) 

AT1 

F11 

F22 
F21 
F12 

F22W 
GL 

SF222 

T-F33 
T-F22S23 

 
22.8 
27.2 
27.0 
29.5 
29.2 
19.5 
19.0 
26.0 
22.0 

 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 
1.15 

 
2/0o, 2/90o 

4/0o, 4/90o 

4/0o, 2/90o 

2/0o, 4/90o 

4/0o, 4/90o 

5/0o, 5/90o 

4/0o, 4/90o 

3/0o, 3/90o 

2/0o, 2/90o 

 
0.13 
0.13 
0.13 
0.13 
0.13 
0.17 
0.13 
0.13 
0.13 

 
2.6 
5.2 
3.9 
3.9 
5.2 
8.4 
5.2 
3.8 
2.6 

 
230 
230 
230 
230 
230 
70 
230 
230 
230 

GPR1 

4 
8 
9 
12 
13 
14 

 
20.0 
20.0 
20.0 
34.0 
34.0 
34.0 

 
0 
0 
0 
0 
0 
0 

 
2/45o, 2/-45o 

2/45o, 2/-45o 
2/45o, 2/-45o 
2/45o, 2/-45o 
2/45o, 2/-45o 
2/45o, 2/-45o 

 
1.32 
1.32 
1.32 
1.32 
1.32 
1.32 

 
15.0 
15.0 
15.0 
15.0 
15.0 
15.0 

 
64.7 
64.7 
64.7 
64.7 
64.7 
64.7 

 
1 AT: Antonopoulos and Triantafillou (2002); GPR: Gergely et al. (2000).  Notation of specimens is as defined by 

those who conducted the tests. 
2 ρs = 0.0017, ρsv = 0.0034, fy = 265 MPa. 
3 Strips placed on one side of the joint debonded well before the peak load (strength) was reached and were ignored. 
4 L denotes the total number of layers on both sides of the joint at an angle θ from the horizontal. 
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Both sets of test data described above were used to evaluate the proposed analytical model. 
A few test results were omitted from the comparison, because the associated strengthening designs 
were considered as either unsuccessful or unrealistic: three joints in the study of Antonopoulos and 
Triantafillou (2002) were strengthened with stiff strips that debonded quite early (before the peak 
load was reached), whereas four joints in the study of Gergely et al. (2000) were strengthened with 
unrealistically low quantities (resulting in extremely low axial rigidity) of FRP.  Details about the 
design parameters of the joints compared are given in Table 1 and the comparison between 
analytical and experimental values for the joint shear strength is given in Table 2.  Unless described 
differently in Table 1, in all these tests ρs and ρc,in were equal to zero and the bond of rebars was 
assumed perfect, corresponding to βt = βl = 0.  The last assumption was verified in the tests of 
Antonopoulos and Triantafillou (2002), whereas no details are provided by Gergely et al. (2000) 
regarding rebar slip. 
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Figure 5.  Typical load versus displacement curves. 
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Table 2.  Comparison of analytical predictions with test results. 

 
 

Specimen 
 

vmax 
Experimental

(MPa) 

vmax 
Analytical 

(MPa) 

vmax-Anal. 
vmax-Exp. 

 
AT 

F11 

F22 
F21 
F12 
F22W 
GL 
SF22 

T-F33 
T-F22S2 

 
4.64 
5.37 
5.47 
4.74 
6.15 
4.80 
4.81 
4.80 
4.33 

 
4.50 
6.62 
5.75 
5.84 
6.88 
4.36 
5.68 
5.66 
4.42 

 
0.97 
1.23 
1.05 
1.23 
1.12 
0.91 
1.18 
1.18 
1.02 

GPR 

4 
8 
9 
12 
13 
14 

 
2.36 
2.36 
2.56 
2.59 
2.58 
2.96 

 
3.04 
3.04 
3.04 
3.04 
3.04 
3.04 

 
1.29 
1.29 
1.19 
1.17 
1.18 
1.02 

 
The authors found the agreement between analysis and test results surprisingly good, and feel 
confident that the analytical procedure developed in this study may be used as a valuable tool 
towards the design of FRP jackets for shear strengthening of beam-column joints. 
 

Conclusions 
 

Analytical models are presented in this study for the analysis of RC joints strengthened with 
composite materials in the form of externally bonded jackets comprising strips or fabrics with fibers 
in any direction.  The models provide equations for stresses and strains at various stages of the 
response until the ultimate capacity is reached, defined by concrete crushing or FRP failure due to 
fracture or debonding.  Solutions to these equations are obtained numerically. 

The models provide useful information on the shear capacity of FRP-strengthened joints in 
terms of the quantity and configuration of the externally bonded reinforcement and may be used to 
design FRP jackets for poorly detailed beam-column joints. 

Parametric analyses indicate that even low quantities of FRP materials may provide 
significant enhancement of the shear capacity.  The effectiveness of external reinforcement 
increases considerably if debonding is suppressed (e.g. through proper anchorage) and depends 
heavily on the distribution of layers in the beam and the column.  The latter depends on the relative 
quantities of steel reinforcement crossing the joint panel and the level of axial load in the column. 

Shear strength predictions provided by the analytical models were found in extremely good 
agreement with 15 experimental results found in the literature, thus adding confidence to the 
validity of the proposed equations. 
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